Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 107

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2022 (April 1, 2022 - March 31, 2023)

HPC Technology Promotion Office

JAEA-Review 2023-018, 159 Pages, 2023/12

JAEA-Review-2023-018.pdf:13.62MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. Over the past 10 years or so, the publication of papers utilizing computational science and technology at JAEA has accounted for about 20 percent of the total publications each fiscal year. The supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2022, the system was used for R&D of light water reactors, high-temperature gas reactors, and fast reactors to contribute to carbon neutrality as a priority issue, as well as for JAEA's major projects such as Various R&D related to nuclear science and technology, R&D related to the response to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station, Development of technology for treatment and disposal of high-level radioactive waste, Support of nuclear safety regulation and nuclear disaster prevention, and safety research for this purpose. This report presents a great number of R&D results accomplished by using the system in FY2022, as well as user support, operational records and overviews of the system, and so on.

Journal Articles

Nuclear data as foundation of nuclear research and development

Fukahori, Tokio; Nakayama, Shinsuke; Katabuchi, Tatsuya*; Shigyo, Nobuhiro*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 65(12), p.726 - 727, 2023/12

The Investigative Committee on Nuclear Data investigates and observes global trends in nuclear research and development and conducts comprehensive examinations of Japanese nuclear data activities from a broader perspective, as well as cooperation with domestic and foreign academic institutions in a wide range of fields other than the Atomic Energy Society. We aim to establish a system for communication, information exchange, and interdisciplinary cooperation. In this report, we will report on three of the main activities for the 2021-2022 term: a request list site for nuclear data, human resource development, and roadmap production.

JAEA Reports

Assessment report of research and development activities in FY 2021 Activity: "Nuclear Science and Engineering Research" (Result and in-advance evaluation)

Nuclear Science and Engineering Center

JAEA-Evaluation 2022-011, 34 Pages, 2023/03

JAEA-Evaluation-2022-011.pdf:1.12MB
JAEA-Evaluation-2022-011-appendix(CD-ROM).zip:31.23MB

Japan Atomic Energy Agency (hereinafter referred to as "JAEA") consults an assessment committee, "Evaluation Committee of Research Activities for Nuclear Science and Engineering" (hereinafter referred to as "Committee") for result and in-advance evaluation of "Nuclear Science and Engineering", in accordance with "General Guideline for the Evaluation of Government Research and Development (R&D) Activities" by Cabinet Office, Government of Japan, "Guideline for Evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology" and "Regulation on Conduct for Evaluation of R&D Activities" by the JAEA. In response to the JAEA's request, the Committee assessed the research program of the Nuclear Science and Engineering Center (hereinafter referred to as "NSEC"). The Committee evaluated the management and research activities of the NSEC based on explanatory documents prepared by the NSEC, and oral presentations with questions-and-answers.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2021 (April 1, 2021 - March 31, 2022)

HPC Technology Promotion Office

JAEA-Review 2022-035, 219 Pages, 2023/01

JAEA-Review-2022-035.pdf:10.94MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2021, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2021, as well as user support, operational records and overviews of the system, and so on.

Journal Articles

Experimental evidence for the significance of optical phonons in thermal transport of tin monosulfide

Wu, P.*; Murai, Naoki; Li, T.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Nakajima, Kenji; Xia, K.*; Peng, K.*; Zhang, Y.*; et al.

New Journal of Physics (Internet), 25(1), p.013032_1 - 013032_11, 2023/01

 Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)

Journal Articles

Nuclear data as foundation of nuclear research and development

Fukahori, Tokio; Nakayama, Shinsuke; Katabuchi, Tatsuya*; Shigyo, Nobuhiro*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 64(7), p.413 - 414, 2022/07

The Investigation Advisory Committee on Nuclear Data monitors global nuclear research and development trends, and conducts collaborative nuclear data activities with domestic and foreign academic institutions in a wide range of fields. The aims are to contact, to exchange information, and to build an interdisciplinary cooperation system. Reported are the activities on the request list site, human resources development, and roadmap creation regarding nuclear data directly related to future nuclear data research activities, among the main activities in the 2019-2020 period.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2020 (April 1, 2020 - March 31, 2021)

HPC Technology Promotion Office

JAEA-Review 2021-022, 187 Pages, 2022/01

JAEA-Review-2021-022.pdf:10.11MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2020, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2020, as well as user support, operational records and overviews of the system, and so on.

Journal Articles

Study on sodium-water reaction jet evaluation model based on engineering approaches with particle method

Kosaka, Wataru; Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Jang, S.*

Nihon Kikai Gakkai Rombunshu (Internet), 88(905), p.21-00310_1 - 21-00310_9, 2022/01

If a pressurized water/water-vapor leaks from a heat transfer tube in a steam generator (SG) in a sodium-cooled fast reactor (SFR), sodium-water reaction forms high-velocity, high-temperature, and corrosive jet. It would damage the other tubes and might propagate the tube failure in the SG. Thus, it is important to evaluate the effect of the tube failure propagation for safety assessment of SFR. The computational code LEAP-III can evaluate water leak rate during the tube failure propagation with short calculation time, since it consists of empirical formulae and one-dimensional equations of conservation. One of the empirical models, temperature distribution evaluation model, evaluates the temperature distribution in SG as circular arc isolines determined by experiments and preliminary analyses instead of complicated real distribution. In order to improve this model to get more realistic temperature distribution, we have developed the Lagrangian particle method based on engineering approaches. In this study, we have focused on evaluating gas flow in a tube bundle system, and constructed new models for the gas-particles behavior around a tube to evaluate void fraction distribution near the tube. Through the test analysis simulating one target tube system, we confirmed the capability of the models and next topic to improve the models.

Journal Articles

Concepts and basic designs of various nuclear fuels, 5; Fuels for high temperature gas-cooled reactor and molten salt reactor

Ueta, Shohei; Sasaki, Koei; Arita, Yuji*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(8), p.615 - 620, 2021/08

no abstracts in English

Journal Articles

Study on sodium-water reaction jet evaluation model based on engineering approaches with particle method

Kosaka, Wataru; Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Jang, S.*

Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07

If a pressurized water/water-vapor leaks from a heat transfer tube in a steam generator (SG) in a sodium-cooled fast reactor (SFR), sodium-water reaction forms high-velocity, high-temperature, and corrosive jet. It would damage the other tubes and might propagate the tube failure in the SG. Thus, it is important to evaluate the effect of the tube failure propagation for safety assessment of SFR. The computational code LEAP-III can evaluate water leak rate during the tube failure propagation with short calculation time, since it consists of empirical formulae and one-dimensional equations of conservation. One of the empirical models, temperature distribution evaluation model, evaluates the temperature distribution in SG as circular arc isolines determined by experiments and preliminary analyses instead of complicated real distribution. In order to improve this model to get more realistic temperature distribution, we have developed the Lagrangian particle method based on engineering approaches. In this study, we have focused on evaluating gas flow in a tube bundle system, and constructed new models for the gas-particles behavior around a tube to evaluate void fraction distribution near the tube. Through the test analysis simulating one target tube system, we confirmed the capability of the models and next topic to improve the models.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2019 (April 1, 2019 - March 31, 2020)

HPC Technology Promotion Office

JAEA-Review 2020-021, 215 Pages, 2021/02

JAEA-Review-2020-021.pdf:13.11MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2019, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2019, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2018 (April 1, 2018 - March 31, 2019)

HPC Technology Promotion Office

JAEA-Review 2019-017, 182 Pages, 2020/01

JAEA-Review-2019-017.pdf:11.11MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2018, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2018, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2017 (April 1, 2017 - March 31, 2018)

Information Technology Systems' Management and Operating Office

JAEA-Review 2018-018, 167 Pages, 2019/02

JAEA-Review-2018-018.pdf:34.23MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2017, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, and for JAEA's major projects such as R&D of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2017, as well as user support, operational records and overviews of the system, and so on.

Journal Articles

Development of a design support system for geological disposal of radioactive waste using a CIM concept

Sugita, Yutaka; Kageyama, Takeshi*; Makino, Hitoshi; Shimbo, Hiroshi*; Hane, Koji*; Kobayashi, Yuichi*; Fujisawa, Yasuo*; Makanae, Koji*; Yabuki, Nobuyoshi*

Proceedings of 17th International Conference on Computing in Civil and Building Engineering (ICCCBE 2018) (Internet), 8 Pages, 2018/06

This paper presents status of development of the iSRE (integrated system for repository engineering) as a design supporting system that enables rational designing of a geological disposal repository. The complimentary technique of construction information modeling/management (CIM) has been employed for the development of iSRE. CIM uses a shared three dimensional (3D) model of associated data through common data models. In this paper, as a design support system that conforms to the characteristics of information management about engineering technology represented by repetition of design during the disposal project period, we examined and designed the function of the "iSRE", constructed a prototype, and confirmed the function through a trial simulating actual work in the disposal project. As a result, with respect to the functions of DB and IF of the iSRE, we got a prospect that these functions can be the foundation of information management on engineering technology, and development of the prototype of the iSRE and its test run extracted issues for practical use of such system.

Journal Articles

Thermal-hydraulics technological strategy roadmap 2017; An Approach for continuous safety improvement of LWRs

Itoi, Tatsuya*; Iwaki, Chikako*; Onuki, Akira*; Kito, Kazuaki*; Nakamura, Hideo; Nishida, Akemi; Nishi, Yoshihisa*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 60(4), p.221 - 225, 2018/04

no abstracts in English

JAEA Reports

Confirmation tests for Warm Pre-stress (WPS) effect in reactor pressure vessel steel (Contract research)

Chimi, Yasuhiro; Iwata, Keiko; Tobita, Toru; Otsu, Takuyo; Takamizawa, Hisashi; Yoshimoto, Kentaro*; Murakami, Takeshi*; Hanawa, Satoshi; Nishiyama, Yutaka

JAEA-Research 2017-018, 122 Pages, 2018/03

JAEA-Research-2017-018.pdf:44.03MB

Warm pre-stress (WPS) effect is a phenomenon that after applying a load at a high temperature fracture does not occur in unloading during cooling, and then the fracture toughness in reloading at a lower temperature increases effectively. Engineering evaluation models to predict an apparent fracture toughness in reloading are established using experimental data with linear elasticity. However, there is a lack of data on the WPS effect for the effects of specimen size and surface crack in elastic-plastic regime. In this study, fracture toughness tests were performed after applying load-temperature histories which simulate pressurized thermal shock transients to confirm the WPS effect. The experimental results of an apparent fracture toughness tend to be lower than the predictive results using the engineering evaluation models in the case of a high degree of plastic deformation in preloading. Considering the plastic component of preloading can refine the engineering evaluation models.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2016 (April 1, 2016 - March 31, 2017)

Information Technology Systems' Management and Operating Office

JAEA-Review 2017-023, 157 Pages, 2018/02

JAEA-Review-2017-023.pdf:22.68MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20% of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2016, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2016, as well as user support, operational records and overviews of the system, and so on.

Journal Articles

Lessons learned from emergency response during severe accident at Fukushima Daiichi Nuclear Power Plant viewed in human resource development

Yoshizawa, Atsufumi*; Oba, Kyoko; Kitamura, Masaharu*

Nihon Kikai Gakkai Rombunshu (Internet), 83(856), p.17-00263_1 - 17-00263_17, 2017/12

JAEA Reports

Scenario development on application of engineering technology for geological disposal; Study of influence of earthquake at site construction, operation and closure stages and that impact on safety functions after closure of disposal facility (Contract research)

Takai, Shizuka; Takayama, Hideki*; Takeda, Seiji

JAEA-Data/Code 2016-020, 40 Pages, 2017/03

JAEA-Data-Code-2016-020.pdf:2.42MB

In this report, another group of scenarios for occurrence of earthquake at construction stage, operation stage and closure stage of disposal facility was presented. At first, we compiled information about damage cases of tunnel by earthquake and analyzed conditions for occurrence of damage. Base on this result and the previous report, information of influence of the accidents and human factors on safety functions and information of FEP about THMC variation, we specified events to be considered, which occur by earthquake and influence engineering barriers, natural barriers and long-term safety after closure stage of disposal facility. We compiled influence of the events on safety functions after closure stage of disposal and showed the chains of the influence on long-term safety as scenarios. These results were integrated as a database that could support development of scenarios caused by application of engineering technologies to geological disposal.

Journal Articles

Development of a design support system for geological disposal using a CIM concept

Sugita, Yutaka; Kawaguchi, Tatsuya; Hatanaka, Koichiro; Shimbo, Hiroshi*; Yamamura, Masato*; Kobayashi, Yuichi*; Fujisawa, Yasuo*; Kobayashi, Ichiro*; Yabuki, Nobuyoshi*

Proceedings of 16th International Conference on Computing in Civil and Building Engineering (ICCCBE 2016) (Internet), p.1173 - 1182, 2016/07

This paper presents status of development of the iSRE (integrated system for repository engineering) as a design supporting system that enables rational designing of a geological disposal repository. The complimentary technique of construction information modeling/management (CIM) has been employed for the development of iSRE. CIM uses a shared three dimensional (3D) model of associated data through common data models. The contents of this paper are the goal of the development, design requirements and required functions, the basic structure of iSRE. The main databases of the iSRE could then be designed with an interface to coordinate with external systems and other databases. Some of the databases and the interfaces were trialed and a data model was then built. A scenario of iSRE operation was also created and the applicability of iSRE using a data model was also examined. Thanks to the use of the existing software, the development process could be conducted while solving problems for realistic test cases. The prospect of the development of the iSRE for geological disposal projects was realized and the iSRE was confirmed as being a useful tool for designing a repository.

107 (Records 1-20 displayed on this page)